Instituto Português da Oualidade

MINISTÉRIO DA ECONOMIA E DO EMPREGO

EURAMET Project no. 1157

Inter-comparison of a 1000 L proving tank

Final Report

IPQ (Elsa Batista) – Coordinator of the comparison VSL (Erik Smits) – Pilot and coordinator of the comparison

September 2013

Contents

1. Introduction	
2. The transfer standard	4
3. Calibration method	5
3.1. Type of calibration method	5
3.2. Gravimetric method	6
3.3. Volumetric method	6
4. Working conditions and equipment used	7
4.1. Gravimetric method	7
4.1.2. Type of water	7
4.1.3. Mass standards	
4.1.4. Balance	9
4.2. Volumetric method	9
4.2.1. Working conditions during the measurements	9
4.2.2. Type of water	10
4.2.3. Volume standard	10
5. Measurement results	11
5.1. Stability of the TS	
5.2. Measurement results	
5.3. Determination of the reference value	
6. Uncertainty presentation	17
7. Conclusions	
8. References	19
Annex 1 – Spreadsheets	20
Annex 2 – Calibration Certificate – 1000 L temperature sensor	
Annex 3 – Degree of equivalence between the laboratories	26

1. Introduction

During the EURAMET TC Flow meeting, held in Scotland in March 2010, it was agreed to start a comparison with a 1000 L proving tank in order to compare results, uncertainties and calibration methods. Both the gravimetric method and the volumetric method were used by several laboratories.

Within EURAMET it is the first time that a comparison is organised in the large volume capacity range. So far there have been only EURAMET comparisons in the μ L range, and volumes of 100 mL, 5 L and 20 L. Compared to small volume standards, the calibration of large proving tanks involves a number of circumstances that may vary considerably between the laboratories (type and preparation of water and its actual temperature, control of surrounding air temperature and humidity, practical handling, different surface conditions inside, techniques to read the scale, use of balance or volumetric standards etc.).

The Portuguese and Dutch Metrology Institutes, IPQ and VSL, were the coordinators of this comparison. VSL, acting as the pilot laboratory, performed the initial and final measurements on the 1000 L proving tank.

The project protocol was sent to all the EURAMET TC Flow members and 11 NMIs agreed to participate. During the comparison two other NMIs joined and one withdrew due to customs problems. The circulation of the 1000 L proving tank started in September 2010 and ended in June 2012.

Each NMI had one month to perform the calibration of the 1000 L proving tank. The participants are presented in table 1, in order of participation date.

NMI	Country	Participation date	Responsible
	Nothorlanda	0 1 1 2010	Erile Croite
VSL	Nethenanus	September 2010	ETIK SITIILS
SP	Sweden	October	Per Wennergren
JV	Norway	November	Gunn Svendsen
SMU	Slovakia	December	Miroslava Benkova
MIRS	Slovenia	January 2011	Matjaz Korosec
IPQ	Portugal	February	Elsa Batista
BEV	Austria	March	Michael Matus
EIM	Greece	August	Zoe Metaxiotou
CEM	Spain	November	Nieves Medina
DMDM	Republic of Serbia	February 2012	Branislav Tanasic
BOM	Republic of Macedonia	May 2012	Anastazija Sarevska
LNE	France	August 2012	Paul-André Meury

Table 1 – Participants	of the EURAMET	Project 1157
------------------------	----------------	--------------

The same transport company was hired by all the participants but still there were some delays due to all sorts of problems but mainly because of customs issues.

Participants presented a report of their measurements before the end of the comparison according to a spreadsheet supplied by the coordinators of the comparison, Annex 1.

2. The transfer standard

The 1000 L proving tank that was circulated in this comparison is the property of VSL. It has the following characteristics (see figure 1):

- > carbon steel construction with a coating on the inside
- 1000 L nominal volume at 20 °C
- double windows (glass plates) in the neck (front and back)
- > scale extending from -1% to +1%, scale interval 0,01%, with a length of 225 mm
- > approximate mass excluding the transport box: 300 kg
- diameter of main body: 1,35 m
- ➢ height including the wheels: 2,40 m
- ➢ inner diameter of the neck: 330 mm
- \succ coefficient of cubical thermal expansion of the TS: 0,0000335 °C⁻¹
- > RTD (Pt-100) length 300 mm, calibrated by VSL including read-out unit

Figure 1 – proving thank of 1000 L

3. Calibration method

The participating laboratories used their normal calibration method(s)/procedure(s) to determine the volume at the zero graduation mark of 1000 L. The gravimetric method (weighing of water) as well as the volumetric method (filling with water from one proving tank to another) was used, see figure 2.

The measurements were performed at varying room temperature conditions and the results recalculated for a liquid temperature of 20 °C.

The proposed liquid delivering time was about 6 minutes.

After emptying the proving tank the laboratories waited 30 seconds before closing the valve.

In the spreadsheet that was supplied by the coordinators of the comparison, each laboratory described the equipment that was used during the calibration and its traceability.

3.1. Type of calibration method

Both the gravimetric and volumetric method were allowed to be used. Three laboratories used both methods, five laboratories used the volumetric method and four laboratories used the gravimetric method, see table 2.

NMI	Method
SP	Gravimetric and
	volumetric
MIRS	Volumetric
IPQ	Gravimetric and
_	volumetric
BEV	Gravimetric and
	volumetric
EIM	Volumetric
CEM	Volumetric
VSL	Gravimetric
SMU	Gravimetric
DMDM	Volumetric
JV	Gravimetric
BOM	Volumetric
LNE	Gravimetric

Table 2 – Used calibration method

3.2. Gravimetric method

The majority of laboratories that performed the calibration of the 1000 L proving tank (PT) with the gravimetric method used the formula described in ISO 4787 [1]:

$$V_{20} = (I_L - I_{E1}) \times \frac{1}{\rho_W - \rho_A} \times \left(1 - \frac{\rho_A}{\rho_B}\right) \times \left[1 - \gamma(t - 20)\right]$$
(1)

- V₂₀ _ Volume, at 20 °C
- Weighing result (or result of the substitution, double substitution or other method of weighing) of the recipient full of liquid
- *E* Weighing result (or result of the substitution, double substitution or other method of weighing) of the empty recipient
- $\rho_{\rm W}$ Liquid density, in g/mL, at the calibration temperature t
- $\rho_{\rm A}$ Air density
- $\rho_{\rm B}$ Density of masses used during measurement (substitution) or during calibration of the balance, assumed to be 8,0 g/mL
- γ Cubic thermal expansion coefficient of the material of the proving tank under calibration
- *t* Liquid temperature used in the calibration

Some laboratories used their own model and equation.

3.3. Volumetric method

The majority of the laboratories that performed the calibration of the 1000 L proving tank by the volumetric method used the following formula:

$$V_{t} = V_{0} \left[1 - \gamma_{RS} (t_{0RS} - t_{RS}) + \beta (t_{PT} - t_{RS}) + \gamma_{PT} (t - t_{PT}) \right]$$
(2)

- V_t Volume of the proving tank (PT) at t° C
- V_0 Volume of the reference standard (RS) at the reference temperature t_{0RS}
- t_{ORS} Reference temperature of the RS
- t Reference temperature of the PT
- t_{RS} Temperature of the liquid in the RS
- t_{PT} Temperature of the liquid in the PT
- γ_{RS} Coefficient of cubical thermal expansion of the material of the RS
- β Coefficient of cubical thermal expansion of the liquid (water) at the average test temperature: 0,5 ($t_{RS} + t_{SCM}$)
- γ_{PT} Coefficient of cubical thermal expansion of the material of the PT

Some laboratories used their own calibration model and formula.

4. Working conditions and equipment used

4.1. Gravimetric method

4.1.1. Working conditions

The working conditions in the laboratories of each participant using the gravimetric method are described in table 3:

NMI	Temperature of water	Density of water	Air temperature t _a	Atmospheric pressure P	Relative humidity RH
	°C	kg/L	°C	hPa	%
SP	17,668	0,998753	19,83	988,39	33,89
IPQ	17,204	0,999158	19,234	1004,8	55,96
BEV	20,06	0,998323	20,5	1000,6775	29,15
VSL	19,19	0,998695	20,84	1026,29	49,7
SMU	20,55	0,998583	20,16	980,3	49,9
JV	5,87	0,99994	18,6	1011,6	39,7
LNE	20,38	0,998136	20,1	1016	60

Table 3 – Working conditions of gravimetric method

One laboratory presented a low value for temperature in comparison to the reference temperature of the proving tank. Nevertheless if the temperature of this quantity of water is controlled and the volume is corrected for the working condition this will not affect the results significantly.

4.1.2. Type of water

The water production method and the formula or method used to determine the density are described in table 4.

NMI	Production Method	Density formula (or table)
SP	Regular tap water	PTB-Mitt. 3/90
IPQ	Tap water	Determined by density meter
BEV	Distilled by GFL 2012	Wagenbreth & Blanke
VSL	Tap water stored for in the lab for at least one week	PTB 1990 (Spiweck, Bettin) Density off set calibrated with Anton Paar by direct comparison with double distilled water
SMU	-	-
JV	Tap water direct from the public water system	OIML R49
LNE	Demineralized water by osmosis and resin	Density at 20°C by pycnometer method + density variation with temperature

Table 4 – Water characteristics of gravimetric method

The water used by the majority of the laboratories is tap water. Corrections were applied for the impurity to the used water density formula in order to have the correct water density.

4.1.3. Mass standards

Some information about the type of mass standards is given in table 5.

NMI	Manufacturer	Туре	Upper range Value (kg)
SP	Mettler		0,001 to 500
IPQ	FRA	M1	1000
BEV	-	rect. bar	20
VSL	Eegema	-	1000
SMU	-	-	-
JV	Unknown	-	500
LNE	LNE	-	0,001 to 200

Table 5 – Mass characteristics

The laboratories did not report the OIML class of the mass used [2] in the type column. Only two laboratories used a mass standard of the same nominal volume as the calibrated proving tank.

4.1.4. Balance

Information about the type of balance is given in table 6:

Table 6 – Balance

NIMT	Manufacturor	Tuno	Upper range Value	Resolution
INIMIT	Manufacturer	туре	(kg)	(kg)
SP	Mettler	XP6002KL	6100	0,01
IPQ	Mettler	KE 1500	1500	0,02
BEV	PEUKO	mechanical comparator	1300	0,002
VSL	Wohwa	40	3500	0,020
SMU	METTLER	KG 6000	6000	0,01
JV	Kambo	-	3150	0,02
LNE	Mettler	KC 600	600	0,0001

The upper range and resolution of the balance is variable and can influence the declared uncertainty.

4.2. Volumetric method

4.2.1. Working conditions during the measurements

The working conditions as mentioned by the participants are described in table 7:

NMI	Temperature	Air	Atmospheric	Relative
	of water	temperature	pressure	humidity
	t _w (°C)	t _a (°C)	P (hPa)	RH (%)
SP	18,62	20	-	-
MIRS	-	-	-	-
IPQ	16,948	19,96	1009,44	64,4
BEV	19,77	19,7	-	-
EIM	22,70	22,0	1024	53,3
CEM	20,02	20,38	935,97	47,6
DMDM	19,01	21,51	1011,9	43,47
BOM	24,15	25,0	984,3	48,8

Table 7 – Volumetric method working conditions

The presented values are more or less the same for the different laboratories.

The majority of the laboratories used the PT 100 that was installed in the 1000 L proving tank for the water temperature measurements. The calibration certificate of the probe was supplied by VSL, Annex 2.

4.2.2. Type of water

The majority of the laboratories used tap water. For the volumetric method the water impurity is not an issue for the calculations nor is it an uncertainty source for the results.

4.2.3. Volume standard

Information about the type of volume standard is reported in table 8.

NMI	Manufacturer	Туре	Volume (L)	Resolution
SP	Furhoffs Rostfria AB	Overflow	1000	20,3 ml/mm
MIRS	Aleksander Lozar s.p.	Overflow	500	-
IPQ	Atenic	Overflow	500	-
BEV	Pachschwöll	Stripping plate	500	N.A.
EIM	Edelstahlbau Tannroda GmbH	Overflow pipette	200	-
CEM	Vial-Metrologie	Overflow	500	-
DMDM	JUSTING s.r.o., Slovakia	Overflow pipette	500	-
BOM	Edelstahlbau Tannroda GmbH	Ex	500	0,1 L

Table 8 – Volume standard

The majority of the laboratories used a 500 L overflow standard.

5. Measurement results

5.1. Stability of the TS

VSL, acting as the pivot laboratory, made a calibration of the TS at the beginning, the middle and the end of the comparison. The first value was taken as the official result of VSL. The results of the stability measurements are presented in table 9.

			•		
NMI	Measurement	Date	Volume (L)	Uncertainty (L)	Δ <i>V</i> (L)
VSL	Initial	September 2010	999,598	0,094	0.041
	Middle	March 2012	999,620	0,092	0,041
	Final	August 2012	999,579	0,099	

The three results obtained by VSL are consistent. The difference in measured volume is considerably smaller than the stated uncertainty. This demonstrates that the TS had a stable volume during the entire comparison.

5.2. Measurement results

The measurement results presented by each participant are collected in table 10.

	Gra	vimetric	Vo	lumetric
NMI	Volume (L)	Uncertainty (L)	Volume (L)	Uncertainty (L)
SP	999,700	0,090	999,70	0,13
MIRS			999,83	0,49
IPQ	999,55	0,20	999,70	0,24
BEV	999,705	0,048	999,724	0,063
EIM			999,74	0,19
CEM			999,73	0,21
VSL	999,598	0,094		
SMU	999,64	0,72		
DMDM			999,97	0,28
JV	999,64	0,25		
BOM			999,52	0,26
LNE	999,55	0,10		
Mean value	999,664	0,035	999,722	0,049

Table :	10 –	Volume	measurements
Iavic	TO	volume	measurements

Figure 2 – Volume measurements with error bars representing the laboratory reported uncertainties.

There are a total of 15 measurements of 12 laboratories. For the laboratories that presented both volumetric and gravimetric results only one was used for the determination of the reference value, the one with the lower uncertainty.

A difference between the results from the gravimetric method and the results from volumetric method can be observed. The mean volume of the gravimetric method is 999,664 L and for the volumetric method the mean volume is 999,722 L. From the 3 laboratories that performed both measurements only IPQ observed a similar difference between the results.

The presented uncertainties for the volumetric method are in all cases larger than for the gravimetric method, as expected, because it is a secondary calibration method.

5.3. Determination of the reference value

To determine the reference value of this comparison (RV) the weighted mean (3) was selected, using the inverses of the squares of the associated standard uncertainties as the weighing factors [3], according to the instructions given by the BIPM:

$$y = \frac{x_1/u^2(x_1) + \dots + x_n/u^2(x_n)}{1/u^2(x_1) + \dots + 1/u^2(x_n)}$$
(3)

To calculate the standard deviation u(y) associated with the volume y, equation (4) was used:

$$u(y) = \sqrt{\frac{1}{1/u^2(x_1) + \dots + 1/u^2(x_n)}}$$
(4)

The expanded uncertainty of the reference value is $U(y) = 2 \times u(y)$.

To identify an overall consistency of the results a chi-square test can be applied to all n calibration results.

$$\chi_{obs}^{2} = \frac{(x_{1} - y)^{2}}{u^{2}(x_{1})} + \dots + \frac{(x_{n} - y)^{2}}{u^{2}(x_{n})}$$
(5)

where the degrees of freedom are: v = n-1

The set of results is inconsistent when: $Pr\{\chi^2(v) > \chi^2_{obs}\} < 0,05$. The function *CHIINV(0,05; n-1)* in MS Excel was used. The set of results is rejected when *CHIINV(0,05; n-1) < \chi^2_{obs}.*

If the consistency check has a positive result then y is accepted as the RV x_{ref} and $U(x_{ref})$ is accepted as the expanded uncertainty of the RV.

If the set of results appears to be inconsistent then the laboratory with the highest value $(x_i - y)^2$

of $\frac{(x_i - y)^2}{u^2(x_i)}$ is excluded from the next round of evaluation and the new reference value,

reference standard uncertainty and observed chi-squared value is calculated again without the excluded laboratory. When the set or results passes the consistency check, the degree of equivalence d_i between each laboratory result x_i and the RV (x_{ref}) is calculated using the following formulas:

$$\begin{aligned} d_i &= x_I - x_{ref} \\ U(d_i) &= 2 \times u(d_i) \\ \text{where } u(d_i) \text{ is calculated from} \end{aligned} \tag{6}$$

$$u^{2}(d_{i}) = u^{2}(x_{i}) - u^{2}(x_{ref})$$
(8)

Discrepant values can be identified when $|d_i| > 2u(d_i)$,

To calculate the degrees of equivalence d_{ij} between the laboratories the following formulas are used:

$$d_{i,j} = x_i - x_j \tag{9}$$

$$U(d_{i,j}) = 2 \times u(d_{i,j}) \tag{10}$$

Where $u(d_{i,i})$ is calculated from

$$u^{2}(d_{i,j}) = u^{2}(x_{i}) + u^{2}(x_{j})$$
(11)

The factor 2 in equation (7 and 10) corresponds to a 95% coverage interval under the assumption of normal distribution of the results.

5.4. Results with reference value and RV uncertainty

The obtained reference value is 999,671 L. The expanded uncertainty $U = 2 \times u(y)$ of the reference value is: 0,033 L.

The calculated value $\chi^2(v) = 19,67$ is larger than $\chi^2_{obs} = 19,40$, the observed value, therefore the set of results is consistent from a statistical point of view and the reference value is accepted.

All the measurement results, the reference value and its uncertainty are presented in the following figure 3:

Figure 3 – Reference value and uncertainty

The degree of equivalence with the RV is presented in figure 4:

VSL, IPQ

Figure 4 - Degree of equivalence with reference value

NMI	<i>d</i> (L)	<i>Ud</i> (L)
SP	0,03	0,08
MIRS	0,16	0,49
IPQ	-0,12	0,20
BEV	0,03	0,03
EIM	0,07	0,19
CEM	0,06	0,21
VSL	-0,07	0,09
SMU	-0,03	0,72
DMDM	0,30	0,28
JV	-0,03	0,25
BOM	-0,15	0,26
LNE	-0,12	0,09

Table 11 – Degree of equivalence with RV

There are two laboratories that present slightly discrepant values when compared with the reference value, DMDM and LNE.

The results of the degree of equivalence between all the laboratories can be found in Annex 3.

6. Uncertainty presentation

It was requested that all participants present there uncertainty calculations based on the GUM [4]. Because the used methods are different, so are the uncertainty analyses.

6.1. Gravimetric method

The uncertainty components for each NMI that used the gravimetric method are as follows:

Uncertainty contributions (L)				NMI			
	SP	IPQ	BEV	VSL	SMU	JV	LNE
Balance							
Eccentricity							
Resolution	0,011	0,100	-	0,024	0,191	0,083	0,027
Linearity							
Weights							
Calibration	0,0043	-	0,000		-	0,0591	-
Density	0,019	0,001	0,000	0,002	0,053	0,0028	
Water density	0,020	0,015	0,012	0,028	0,184	0,001	0,035
Water temperature	0,022	0,000	0,002	0,002	0,179		
Air density	0,001	0,000	0,001	0,002	0,023	0,0007	0,003
Artefact							
Expansion coefficient	0,007	0,004	0,000	0,002	0,000	0,0149	0,006
Meniscus	0,029	0,025	0,023	0,025	0,016	0,05	0,006
Temperature	0,006	-	-		-	0,0004	0,010
Repeatability	0,003	0,010	0,002	0,009	0,150	0,0191	0,007
Others	0,006		0,002	0,013			0,006
Combined Uncertainty (L)	0,045	0,10	0,026	0,047	0,36	0,12	0,05
Expanded uncertainty (L)	0,090	0,20	0,052	0,094	0,72	0,25	0,10

Table 12 – Uncertainty components for gravimetric method

For the majority of the laboratories the largest uncertainty component is the uncertainty of the balance.

SMU has a significantly higher expanded uncertainty then the other NMIs due to the repeatability.

6.2. Volumetric method

The uncertainty components for the volumetric method are as follows:

Uncertainty contributions (L)			NMI		
	MIRS	EIM	CEM	DMDM	BOM
Volume standard					
Calibration	0,03656	0,020	0,050	0,050	0,099995
Expansion coefficient	0,01739	0,003	0,001	0,002	0,008575
Water temperature	0,001068	0,001	0,000	0,060	0,030414
Artifact					
Expansion coefficient	2,94×10 ⁻⁷	0,001	0,000	0,001	0,005025
Water temperature	0,001193	0,002	0,081	0,070	0,03016
Meniscus	0,01234	0,060		0,087	0,057735
Expansion coefficient of water	0,0015	0,001	0,003	0,001	0,006054
Evaporation	5,77×10 ⁻⁹	0,015	0,000	0,029	0,026
Repeatability	0,214	0,047	0,017	0,004	0,002585
Others		0,050	0,036		0,001258
Combined Uncertainty (L)	0,25	0,09	0,10	0,14	0,13
Expanded uncertainty (L)	0,49	0,19	0,21	0,28	0,26

Table 13 – Uncertainty components for volumetric method

In the volumetric method the components with the largest contribution to the uncertainty are the volume standard calibration and the meniscus reading.

MIRS has a significantly higher expanded uncertainty then the other NMIs due to the repeatability.

7. Conclusions

The results are quite satisfactory. The majority of the laboratories present results that are consistent with the reference value, and with each other. There are two laboratories, DMDM and LNE, that present slightly discrepant values when compared with the reference value.

The presented uncertainties for the volumetric method are in all cases larger that the uncertainties of the gravimetric method, as expected, because it is a secondary calibration method.

8. References

- 1. ISO 4787-1984; Laboratory glassware Volumetric glassware Methods for use and testing of capacity.
- 2. OIML R111:2004 Weights of classes E1, E2, F1, F2, M1, M1–2, M2, M2–3 and M3, Part 1: Metrological and technical requirements.
- 3. M.G. Cox, The evaluation of key comparison data, Metrologia, 2002, Vol. 39, 589-595.
- 4. JGCM100:2008 Guide to the expression of uncertainty in measurement (GUM).
- 5. JCGM200:2012 International vocabulary of metrology (VIM).

Annex 1 – Spreadsheets

Instituto Português da **O**ualidade

EURAMET Project "Inter-comparison of 1000 L proving tank "

Data Form Gravimetric Calibration

General Information

Country	Laboratory	
Responsible	Date	

Technical specifications and traceability

					Calibration	
Instrument	Manufacturer	Туре	Range	Resolution	date	Traceability
Balance						
Weights						
Ambient air						
Temperature						
Pressure						
Relative Humidity						
Water						
Temperature						

	Production Method	Density formula (or table)
Water density		

Gravimetric used formula

Measurement procedure (short description)

Cleaning procedure

Comments:

vsi

EURAMET Project "Inter-comparison of 1000 L proving tank "

Results Form Gravimetric Calibration

surement results

Test	Mass of water	Temperature of water	Density of water	Air	Atmospheric	Relative humidity	Density of air	Volume (L)
	m	t _w	ρw	t _a	P	RH	ρa	(-)
	kg	°C	kg/L	°C	hPa	%	kg/L	
1								
2								
3								
4								
5								
6								
7								
8								
9								
10								
							Mean (L)	
							Standard	
							deviation (L)	

Uncertainty budget (example of uncertainty components, not mandatory)

Quantity	Value	Distribution	Standard	Sensitivity	Uncertainty	Comment/ Explanation
(x _i)			uncertainty	coefficient	u(y _i)	
			u(x _i)	c _i		
Repetibility measurements						
Mass (kg)						
Air Density (kg/L)						
Water Density (kg/L)						
Density of the mass						
pieces (kg/L)						
Coefficient of expansion						
from the tank material (°C ⁻						
Water temperature (°C)						
Meniscus reading (L)						
Other						
			Combined Ur	certainty (L)		
			Degrees of equivalence			
			k			
			Expanded Un	certainty (L)		

Comments:

Instituto Português da Dualidade

EURAMET Project "Inter-comparison of 1000 L proving tank "

Data Form Volumetric Calibration

General Information

Country	Laboratory	
Responsible	Date	

Technical specifications and traceability

Instrument	Manufacturer	Type	Range	Resolution	Calibration date	Traceability
Volume standard		- 71				j
Ambient			•	•	•	
Temperature						
Pressure						
Relative Humidity						
Water						
Temperature of						
laboratory volume						
standard						
Temperature of						
VSL proving tank						

	Production Method
Water type	

Volumetric used formula

Measurement procedure (short description)

Cleaning procedure

Comments:

EURAMET Project "Inter-comparison of 1000 L proving tank "

Results form volumetric calibration

surement results

Test	Temperature	Air	Atmospheric	Relative	Volume at 20 °C
	of water	temperature	pressure	humidity	(L)
	tw	ta	Р	RH	
	°C	°C	hPa	%	
1					
2					
3					
4					
5					
6					
7					
8					
9					
10					
				Mean (L)	
				Standard	
				deviation (L)	

Uncertainty budget

Quantity	Value	Distribution	Standard	Sensitivity	Uncertainty	Comment/ Explanation
(X i)			uncertainty	coefficient	$u(\mathbf{y}_i)$	
			$u(\mathbf{x}_i)$	c,		
Repetibility measurements						
Volume standard [L]						
Expansion coeficient of the						
standard [°C ¹]						
Temperature od the						
standard [°C]						
Expansion coeficient of the						
waterL [C ⁻¹]						
temperature of the proving						
tank [°C]						
Expansion coeficient of the						
proving tank [°C ⁻¹]						
Meniscus [L]						
Evaporation [L]						
			Combined l	Jncertainty (L)		
			Degrees of	equivalence		
				k		
			Expanded L	Incertainty (L)		

Comments:

Annex 2 – Calibration Certificate – 1000 L temperature sensor

VSL		Certificate
Dutch Metrology nstitute		Number: 3243985 Page 1 of 2
Applicant	VSL B.V. Hugo de Grootplein 1 3314 EG DORDRECHT	
Item	A digital temperature indica	tor with a temperature sensor
	The indicator: Manufacturer : Type : Range : Resolution : Identification number : The identification of the sen	Dostmann Electronics GmbH P650 0 °C to 30 °C 0.01 °C 65010031333 (10T24/1218) sor(s) is given with the results on following page(s).
Calibration Procedure	The thermometer has been on the thermometer in a liquid bath	alibrated by comparison with a standard n based on the ITS-90.
	The ambient temperature w	as (23.0 ± 1.0) °C.
Calibration period	1 October 2012 until 3 Octob	per 2012
Result	The results of the calibration The reported uncertainty of of measurement multiplied t distribution corresponds to a standard uncertainty has bee Expression of Uncertainty in	s are given on following page(s). measurement is based on the standard uncertainty by a coverage factor of $k = 2$, which for a normal coverage propability of approximately 95 %. The en determined in accordance with the 'Guide to the Measurement' (GUM).
Traceability	The result of the calibration accepted measurement stand	is traceable to primary and/or (inter)national dards.
The calibration i R. van Breugel	s carried out by	Delft, 03 october 2012 VSL B.V. ing. C.K. d. Brurn Barendregt Allround Metrology Institute
This partificate is considered with Anaspement (MRA) drewn up 5 the validity of each other's sets (for details see http://kcab.bym VSL B.V. Thijsseweg 11, 2629 JA De P.O. Box 654, 2600 AR Del T + 31 15 269 15 00 F + 31 15 261 29 71	Calibration and Meesurement Capabilities (CMCs) & y the international Committee for Weights and Measuration and measurement certificates for the quantities (c). (c). (f). (NL) R. (NL)	hat are included in Appendix C of the Mutual Recognition mas (CPM). Under the MRA, all participating institutes recognize ranges and measurement encertainties specified in Appendix C CIPM MRA This certificate is issued under the provision that no liebitry is socialities that gaining their performance in the section responsibility against their performance. Reproduction of the complete certificate is permitted. Parts of this
I www.vsl.n!		

Dutch Metrology Institute

Certificate

Number: 3243985 Page 2 of 2

The sensor connected to channel 1 :									
Manufacturer	;	-							
Type	1	Pt100							
Identification number	:	T015 (10T22/1192)							
The immersion depth	;	at least 20 cm							

Results

The result of the calibration and the related uncertainty is given here.

By means of regression a relation is determined between the generated temperature (t_{90}) and the indicated temperature (t). The table below contains this relation and the calculated coefficients. The relation is valid over the calibrated range.

$$(t_{90} - t) = \sum_{i=0}^{t=0} a_i \cdot t_{90}^i$$

1	a,
0	6.1666 × 10 ⁻²
1	-6.6249 × 10 ⁻⁴

The table below is made using this relation and contains the following data:

1. the temperature t₉₀ according to the ITS-90;

the indicator value t;

3. the difference t₉₀-t.

t ₅₀ /°C	t/°C	<i>t</i> ₅₀ − <i>t</i> /°C
0.00	-0.06 4.94	0.06
10.00	9.94	0.06
20.00	19.95	0.05
25.00	24.95 29.96	0.05

The uncertainty in the difference t₃₀-t is 0.02 °C.

This uncertainty includes a contribution from the reproducibility of the instrument, calculated using the deviations from the regression.

	S	Р	MIRS		IPQ		BEV		EIM		CE	М
SP			0,13	0,50	-0,15	0,22	0,00	0,10	0,04	0,21	0,03	0,23
MIRS	-0,13	0,50			-0,28	0,53	-0,13	0,49	-0,09	0,53	-0,10	0,53
IPQ	0,15	0,22	0,28	0,53			0,16	0,20	0,19	0,28	0,18	0,29
BEV	0,00	0,10	0,13	0,49	-0,16	0,20			0,03	0,19	0,02	0,21
EIM	-0,04	0,21	0,09	0,53	-0,19	0,28	-0,03	0,19			-0,01	0,28
CEM	-0,03	0,23	0,10	0,53	-0,18	0,29	-0,02	0,21	0,01	0,28		
VSL	0,10	0,13	0,23	0,50	-0,05	0,22	0,11	0,10	0,14	0,21	0,13	0,23
SMU	0,06	0,72	0,19	0,87	-0,09	0,74	0,07	0,72	0,10	0,74	0,09	0,75
DMDM	-0,27	0,29	-0,14	0,56	-0,42	0,34	-0,26	0,28	-0,23	0,34	-0,24	0,35
JV	0,06	0,25	0,19	0,54	-0,09	0,30	0,07	0,23	0,10	0,30	0,09	0,31
BOM	0,18	0,28	0,31	0,55	0,03	0,33	0,19	0,26	0,22	0,32	0,21	0,33
LNE	0,13	0,13	0,26	0,50	-0,02	0,22	0,13	0,11	0,17	0,21	0,16	0,23

Annex 3 – Degree of equivalence between the laboratories

	VS	L	SM	U	DMDM		JV		BOM		LNE	
SP	-0,08	0,13	-0,06	0,72	0,27	0,29	-0,06	0,25	-0,18	0,28	-0,13	0,13
MIRS	-0,21	0,50	-0,19	0,87	0,14	0,56	-0,19	0,54	-0,31	0,55	-0,26	0,50
IPQ	0,07	0,22	0,09	0,74	0,42	0,34	0,09	0,30	-0,03	0,33	0,02	0,22
BEV	-0,09	0,10	-0,07	0,72	0,26	0,28	-0,07	0,23	-0,19	0,26	-0,13	0,11
EIM	-0,12	0,21	-0,10	0,74	0,23	0,34	-0,10	0,30	-0,22	0,32	-0,17	0,21
CEM	-0,11	0,23	-0,09	0,75	0,24	0,35	-0,09	0,31	-0,21	0,33	-0,16	0,23
VSL			0,04	0,72	0,37	0,29	0,04	0,25	-0,08	0,28	-0,03	0,14
SMU	-0,02	0,72			0,33	0,77	0,00	0,75	-0,12	0,76	-0,07	0,72
DMDM	-0,35	0,29	-0,33	0,77			-0,33	0,36	-0,45	0,38	-0,40	0,30
JV	-0,02	0,25	0,00	0,75	0,33	0,36			-0,12	0,35	-0,07	0,25
BOM	0,10	0,28	0,12	0,76	0,45	0,38	0,12	0,35			0,05	0,28
LNE	0,05	0,14	0,07	0,72	0,40	0,30	0,07	0,25	-0,05	0,28		<u> </u>

Discrepant values are found in red letters.